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Abstract 
Preliminary investigations have been conducted to assess the potential for using artificial neural networks to 
simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of 
pulmonary drug-delivery systems. 

Details are presented of the general purpose software developed for these tasks; it implements a feed-forward 
back-propagation algorithm with weight decay and connection pruning, the user having complete run-time 
control of the network architecture and mode of training. A series of exploratory investigations is then reported 
in which different network structures and training strategies are assessed in terms of their ability to simulate 
known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular 
automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural 
networks are shown to be highly successfid in simulating the behaviour of this simple linear system, but with 
important provisos relating to the information content of the training data and the criteria used to judge when the 
network is properly trained. A second set of investigations is then reported in which similar networks are used to 
simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous 
computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with 
equal success. 

It is concluded that wefblly tailored, well trained networks could provide valuable tools not just for predicting 
but also for analysing the spatial dynamics of pharmaceutical aerosols. 

Amficial neural networks ( A N N s )  are being used in many di- 
verse fields in science and engineering to solve problems in 
novel ways (Zupan & Gasteiger 1991). Their use in the phar- 
maceutical sciences is a new but expanding field, with applic- 
ations including quantitative structure-activity relationships 
(Aoyama et al 1990; Elrod et a1 1990; Bodor et a1 1991; 
Hussain & Johnson 1992; Hussain et al 1992b; Cherquaoi & 
Villemin 1994), molecular graphics (Gasteiger et al 1994), 
pharmacokinetics (Veng-Pedersen & Modi 1992; Hussain et al 
1993) and product formulation (Hussain et al 1991, 1992% c, 
1994). 

In our own research we have been interested to explore the 
use of ANNs in the simulation of aerosol behaviour, with the 
ultimate aim of employing this technique in the analysis and 
design of pulmonary drug delivery systems. Before embarking 
upon detailed investigation, however, we have elected first to 
determine the viability of such an approach using simple model 
systems. In the initial work detailed here, a series of ANNs is 
used to analyse and predict the behaviour of a simple (cellular 
automata-generated) linear model of aerosol flow through a 
Partially obstructed two-dimensional pipe. We demonstrate that 
A " s  are highly successful in predicting the rules (in this case 
known) that govern aerosol behaviour in this system. 

Further work is then reported in which we use the same type 
of ANN to predict the behaviour of single-phase computational 
fluid dynamics (CFD) models of three-dimensional aerosol 
generation devices. We show that the increase in complexity of 
the systems being modelled and the move from two to three 
dimensions does not reduce the ability of ANNs to predict flow 
dynamics. 

We conclude that h t h e r  application of neural networks to 
modelling aerosol flow (not only in aerosol devices but also in 
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pulmonary airways) could be of value in assessing the 
effectiveness of pulmonary administration of drugs, and that 
such methods may prove superior to the existing models of 
these processes (Heyder & Rudolf 1984). 

Materials and Methods 

Feed-forward back-propagation ANNs 
The networks used are two-layer perceptron feed-forward back- 
propagation ANNs (Rumelhart et a1 1986), with the general 
structure shown in Fig. 1. In each ANN, the activation of input 
neurons is imposed by the input data set. The activation of 
neurons in the output layer is calculated by considering the 
weighted sum of the outputs of input neurons and the bias for 
that output neuron. With N input neurons of output xi, the 
activation of the jth output neuron, aj is calculated as: 

i=N 

i= I 
aj = wjo + c wjixi (1) 

where wjo is the bias for the jth output neuron and wji is the 
weight of the connection between the ith input neuron and the 
jth output neuron. The activation of a neuron is modified by 
some form of differentiable activation function to produce its 
output, so that a'j = qaj) (see below). 

During training, modifications of the network weights and 
biases are made by back propagation of error. At iteration 
number n the new weights are calculated as: 

$+' = + P(aixj) + a($ - $-I )  (2) 

9;' = $o + ~ ( 6 ~ )  + a(qo  - 9:') 
and the new biases as: 

(3) 

where a is a momentum factor, fi  is the learning rate and 6 is the 
error signal. For the output layer: 
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FIG. 1. Structure of a simple, two-layer perceptron. 

6i = (Ti - Oi)f‘(Oi) (4) 

where Ti is the ith element of the target in the training set, Oi is 
the output of the ith output neuron and f (x) is the first deriv- 
ative of the activation function. 

Back-propagation of error is performed by batch training, i.e. 
the required changes to weights and biases are calculated for 
each input-target pair as they are encountered in the training set 
but the corrections to the network are applied only after all pairs 
have been tested. Training continues until the number of 
iterations exceeds a set maximum, or the mean square error 
reaches a set minimum. The mean square error, E, is calculated 
as: 

In the more developed ANNs reported here (see below), the 
network connectivity is dynamically updated using the tech- 
niques of weight decay and connection pruning. It has been 
shown that this adaptive regularization can improve the perfo- 
rmance of a feed-forward back-propagation network (Le Cun et 
al 1990). 

Weight decay introduces a decay term, y ,  into the weight 
update bc t ion  (eqn 2) which tends to prevent the connection 
weights from deviating markedly from zero: 

3’’ = wf: + (aixj) + a($ - $-I) - y$ (6) 

Weight decay tends to reduce preferentially the strength of re- 
dundant connections, and these are removed by connection 
pruning - with all connections with weights below a specified 
threshold ( 5 )  being deleted. The network pruning is performed 
at regular (user-defined) intervals, and after each pruning epoch 
the weight decay term is reduced in magnitude. This has the 
effect that initial pruning events determine a rough connection 
pattern, which is then fine-tuned during the final stages of a 
training session. 

Network structure and function 
The nature of the task given to a neural network determines its 
structure. In this work the aim was to produce networks which 
could predict the dynamic behaviour of fluid flow systems. The 
task for a network, when given the state of the fluid to be 
modelled at time t, was to predict the resulting state at time 
t + 1 .  A two-layer perceptron was the simplest network struct- 
ure suited to this task, the data for time t being presented to the 

input layer of the network and the prediction for time t + 1 
being produced as the activation of output layer neurons. A 
correctly trained network, therefore, could when given a snap 
shot of the system, predict the subsequent state of the system, 
and so if repeatedly fed with its own output could give a sim- 
ulation of the system’s evolution through time, which could 
then be compared with the experimental data. Although this 
introduces recurrent links into the network, the structures used 
here cannot be considered as recurrent networks as such, as 
these links are not present during the training process. Rather 
they enable a previously trained network to predict the complete 
trajectory of a variable through time (Bulsari & Palosaari 1993). 

In all the examples presented below, the data were obtained 
by dividing the flow system to be modelled into a series of (two- 
or three-dimensional) cells. This controlled the size of the 
networks used. For each data cell in the experimental model 
there was a Corresponding input-layer and output-layer neuron 
in the network. Thus, for the initial two-dimensional models 
with a 12 x 20 grid of data cells, the corresponding network 
had input and output layers each containing 240 neurons. The 
initial CFD model produced data in a 16 x 16 plane through 
the experimental volume, and the corresponding network 
contained two layers each with 256 cells. Two 16 x 16 data 
planes were extracted from the final CFD model, giving a 
network with two layers of 5 12 cells. 

Three network connection paradigms are presented here. The 
canonical connection scheme connects every neuron in the 
input layer to every neuron in the output layer, producing a fully 
connected network (Fig. 2). In an effort to reduce network 
complexity, locally connected networks were introduced in 
which any given neuron in the bulk of the input layer is only 
connected to the nine “local” neurons on the output layer - 
the corresponding neuron on the output layer and the eight 
neurons surrounding it (Fig. 2). To eliminate edge effects, the 
connectivity of neurons at the perimeter of the input layer is 
reduced, with edge and comer neurons being connected to six 
and four output neurons, respectively. 

Finally, to eliminate the need for an arbitrary decision as to 
the definition of “local” in this context, the devices of weight 
decay and connection pruning were introduced. These enabled 
the network to alter the number of its internal connections 
dynamically during the training process. 

For all networks detailed here, a variety of parameters needs 
to be decided upon before each training run. Whereas some 
affect the quality of learning, most influence only the degree 
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RG. 2. Two different network connection schemes. In each case the one 
highlighted input layer neuron forms connections with the set of 
highlighted output layer neurons. 

a d  speed of convergence. In all runs, the momenta and gains (a 
a d  p), the activation function (f(x), which can be tanh, sigmoid 
or linear), the maximum number of iterations, the weight decay 
term (y) ,  and the interval between pruning events and the 
pruning threshold ( r )  were adjusted by hand to give the best 
performance. 

Implementation 
All calculations were performed on a Silicon Graphics Crimson 
UNIX work-station, with a MIPS R4000 CPU, R4010 FPU and 
32 Mbytes of main memory. Although the studies could have 
been performed using one of the many neural network packages 
available in the public domain, the training and analyses were 
actually performed with a suite of custom-written programs, 
PUDDLE (Pulmonary Drug Delivery Learning Engine), be- 
cause this facilitated manipulations of the network connectivity, 
and enabled the use of machine-specific graphics libraries. With 
PUDDLE, the user has complete run-time control over all as- 
pects of network size and structure and all parameters contro- 
lling the learning process. The output from simulations of 
system behaviour can be displayed graphically, either as static 
colour/grey scale and contour images for the production of 
hard copies, or as animated images in the same format. All 
graphical output exploits the IRIX GL graphics library’s in-built 
facilities for fast polygon handling and double-buffering. 

Cellular automata model of 2-dimensional aerosol Jlow 
The data used to train networks in the initial studies presented 
here used a cellular automata model of aerosol fluid flow in a 
two-dimensional pipe. Each cell of the automaton corresponds 
to an element of the pipe which is partitioned into a 12 x 20 
rectangular grid, and the entry for each cell corresponds to the 
concentration of aerosol in that element of the pipe. Aerosol 
particles are redistributed according to the rules detailed below 
and shown in Fig. 3. 

For a cell (x,y), given the state of the network at time t, the 
contents of that cell, ~ ~ + l ~ , ~ ,  at time t + 1 can be calculated as 
follows. 

For the cells of type (a): 

For the cells of type (b) and also those adjacent to the top wall 
ofthe pipe and the obstacle: 

rt 
I - 

FIG. 3. Rules governing cellular automata behaviour. The 2-D pipe is 
partitioned into a rectangular grid of cells, with a centrally positioned 
3 x 3 cell obstruction. The aerosol from selected grid cells flows in the 
directions indicated by the arrows. 

In summary, therefore, for a given element of the pipe, a pro- 
portion of the particles remains therein until the next time step, 
and those flowing out of the element do so into the three ele- 
ments directly down-flow. The proportion leaving an element is 
governed by the variable 4, which in a real system might cor- 
respond to flow rate, gas viscosity, or perhaps particle density. 
In the model reported here, 4 = 0.75 and there is a 3 x 4 cell 
obstruction positioned centrally, half-way down the pipe. 

The experimental data are generated as sets of snapshots of 
the aerosol flow through the pipe through time. A bolus of 
material (of random density) is introduced at the top of the pipe 
and the flow of the aerosol cloud is calculated iteratively over a 
series of time steps from t=O to t = 3 0  using the rules 
contained in the automata. 

Computational Jluid dynamics model of 3-dimensional fluid 

In order to generate more complex and realistic data for use in 
ANN training, two different three-dimensional fluid flow sys- 
tems were simulated by means of computational fluid dynamics 
(CFD) techniques using the commercially available CFD soft- 
ware Phoenics. Phoenics uses finite-volume techniques to trans- 
form the differential equations governing heat, mass and 
momentum flow into a set of algebraic equations by integration 
over each cell in the computational domain. These algebraic 
equations are then solved for each cell using iterative approx- 
imation methods. In both the models used here, the simulations 
involve transient flow conditions, and are solved using Phoen- 
ics’ non-parabolic mode with time steps 10 ms apart. Heat 
transfer in Phoenics is controlled by setting the laminar Prandtl 
number for temperature; in both CFD models it has a value of 
0.71. Obstructions such as the baffle and jet walls were mod- 
elled by setting their block porosity to zero. Boundaries which 
allow free flow of fluid were created as constant-pressure 
patches, with diffusive movement of enthalpy through the patch 
set to zero; solid walls disallow both mass and enthalpy trans- 
Port. 

In both the CFD models the flow is simulated in a single- 
phase system. As a means of modelling the mass-transport and 

POW 
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FIG. 4. First model (a) and second model (b) for CFD calculations. 

diffusion properties of aerosol clouds, temperature is used as a 
marker for aerosol concentration. By using this technique we 
greatly reduce the computational tasks involved, while retaining 
the important features of realistic fluid flow. No buoyancy terms 
were employed, to eliminate the effects of convection. 

The first CFD model simulated comprised a 5 cm cube filled 
with cold fluid, with a 5 m s-' jet of hot fluid emerging 
through a nozzle and impinging upon a centrally placed 
8 mm x 8 mm baffle (Fig. 4a). The boundaries of this space 
allow free flow of fluid. The calculations were performed in a 
non-linear 16 x 16 x 16 grid, with the smaller unit cell 
dimensions at the centre of the tank affording greater accuracy 
in the calculations of the complex flow around the baffle. The 
data derived from this model are point temperature values on a 
plane passing through the centre of the tank, bisecting the jet 
vertically. Three simulations of jet flow Over 180 ms were 
performed, with jet temperatures So, 10" and 20" above the bulk 
fluid temperature. 

The second CFD model simulated involved a solid-walled 
cuboid device (of the same dimensions as the first) providing a 
crude approximation to a jet nebulizer device. An inlet tube 
1 cm long with a square 4 mm x 4 mm cross-section emerges 
centrally from one wall, with a fluid jet emerging from this tube 
(after being heated by its walls) and impinging upon a centrally 
positioned baffle (Fig. 4b). Fluid leaves the device through a 
1 cm x 4 mm outlet positioned near the top of the wall 
opposite the inlet tube. The calculations were performed on a 
nonlinear 16 x 16 x 16 grid of cells for three runs of 180 ms 
each, with jet temperatures So, 10" and 20" above the bulk fluid 
temperature. The data derived from this model are point 
temperature values on two planes passing through the device. 

The first plane, as in the previous model, passes through the 
centre of the device bisecting the jet vertically. The second 
plane (perpendicular to the first) passes vertically through the 
rear of the device, behind and parallel to the baffle. 

Results 

The networks used here to model fluid flow became more 
complex and refined as our understanding of the modelling 
processes involved in training two-layer perceptrons to predict 
flow increased. The networks used are unusual in that they 
possess a large number of both input and output neurons, and SO 

have a very large number of internal connections, which 
increases the number of variables to be refined during the 
training process. 

For all networks the training was continued until the mean 
square error fell below a user-specified value, or until a 
maximum number of iterations was exceeded. In all the 
examples presented, the limit for mean square error was set at 
lop7. Rather than relying upon the mean square error to assess 
the performance of a trained network, however, other, more 
stringent, methods were also used. Given that a correctly 
functioning network can predict the aerosol distribution at time 
t + 1 given the distribution at time t, feeding the output of such 
a network to its input layer should generate a series of 
predictions of aerosol distribution. Such a simulation of the 
system's evolution through time can be compared with the 
behaviour of the system itself. The starting state for such a 
simulation can either be one which the trained network has 
encountered in its training set (testing the network's ability to 
memorize how that particular aerosol cloud flows) or one which 
has not been presented to the network (testing its ability to 
generalize about flow). Unless mentioned below, all illustrations 
in this paper are of simulations obtained using previously 
unseen examples of flow. 

With the cellular automata model, we have used a further 
method to assess the quality of the training process. Knowing 
the rules embedded in the automaton (and having a direct 
mapping between the experimental system and the network 
structure) enables calculation of the correct values for neuron 
connection weights. During training, a successful network 
should "discover" these values. By examining the connection 
weights and biases, the success of training can be determined. 

The first network (network I) employed to model aerosol flow 
through the partially obstructed two-dimensional pipe was the 
simplest. This network was fully connected, used the sigmoid 
activation function, f(x)= 1/(1 +e-x), and scaled both the 
input and output data into the most linear portion of the 
activation function, between 0.1 and 0.8. The training data set 
was derived from a single example of flow through the pipe, 
with 10 time steps used from a run of 30 steps. This was the 
only network reported here to achieve the limit of mean square 
error, reaching after 20 400 iterations. Table 1 shows the 
correct and achieved local connection weights in network I. 
Despite the low mean square error achieved, the network has 
not discovered the rules governing aerosol flow through the 
pipe. This is demonstrated by Fig. 5, which shows time steps 
1-9 and 21-29 in a network simulation of flow, above the 
corresponding time steps from the cellular automata calcula- 
tions of flow. The starting state for this simulation was one 
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Table 1. Local connection weights: correct values and values extracted from trained networks I to V 

0.1470 0.2070 
a Correct values 

- 0.0133 0.0038 - 0.0016 0.4968 
0.1563 0.2053 
d Network 111 

0.0000 0.0159 0.0 170 
04000 - 0.0023 - 04015 

0.1470 0.0384 04000 
b Network I 

0.0037 - 0.0240 0.0607 
0.0046 0.0521 0.4242 
0.1539 0.1059 0.2541 

e Network IV 

0.0000 - 0.0364 0.073 1 - 0.0715 
0.0000 0.08420- 0.0929 

0.0000 0.2294 0.1235 0.1427 
.1228 

c Network I1 

04024 0.0000 0.0572 0.0147 
0.0380 0.1278 0.2012 0.1068 
0.1466 0.1469 0.1940 0.1344 

f Network V 

which the network had encountered in its training set. Aerosol 
concentration is shown by a grey-scale and isoconcentration 
con to^. The simulation is poor in many respects. There is 
erroneous appearance of aerosol particles well ahead of the 
&n cloud front, and at the end of the simulation, where only 
particles deposited above the obstruction should remain, there is 
aerosol distributed throughout the pipe. 

One possible reason for poor performance of a fblly 
connected network was that there were too many variables in 
the network when compared with the amount of data in the 
training set. The next network employed (network 11) was 
locally connected, used the tanh activation function, 
f(x)=tanh(x), and used data scaled into the mostly linear 
portion of this activation function between 0.0 and 0.9. The 
training data set was again derived from a single example of 

flow through the pipe, with 10 time-steps used from a run of 30 
steps. This network failed to reach the mean square error 
threshold, attaining a mean square error of 2.78 x after 
2 x lo6 iterations (taking approx. 6 h in real time). At this 
stage, the network had effectively stopped learning, with very 
little change being recorded in the mean square error. The local 
connection weights were now closer to the desired values (Table 
I), and the performance of the network in simulations was 
much improved (Fig. 6). The network still, however, incorrectly 
generated aerosol particles down the left-hand side of the pipe, 
well ahead of the advancing aerosol cloud. The flow on the 
right-hand side was, on the other hand, simulated correctly, as 
was the build up of aerosol particles above the obstruction, the 
flow around one side of the obstruction, and the development of 
clear air behind the main aerosol cloud. 

ANN prediction 

Real data 
ANN prediction 

Real data 

FIG. 5 .  A comparison of the real and (ANN) network I-simulated aerosol flow in the 2-D pipe. The pattern of aerosol density is shown by means of a 
grey scale with superimposed isodensity contours. The two rows of panels presented on top are for time steps 1-9, and those below are for time steps 
21-29. 
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Real data 
A N N  prediction 

Real data 

FIG. 6 .  A comparison of the real and (ANN) network 11-simulated aerosol flow in the 2-D pipe. Details are as described for Fig. 5. 

At this stage, it was assumed that the training sets still 
contained too little information for learning to proceed 
correctly. Training sets with a higher information content 
were artificially generated by presenting the cellular automata 
with a series of randomly generated concentrated inhomoge- 
neous aerosol clouds and combining 15 such examples of flow 
in one training set. This approach could not have been 
attempted with a real, physical system. The network with this 
data (network 111) was identical to network 11, with the training 
set being scaled in the range 0-0.025. A mean square error of 
5.58 x was attained after 1 000 005 iterations (taking 
approx. 2 h in real time), when the decrease in mean square 
error had effectively stopped. Performance was very good, with 
the network correctly discovering the rules governing flow 
(Table 1). In consequence there was very little difference seen 
between the cellular automata data and the network prediction, 
and the flow through the pipe and around the obstruction was 
found to be modelled very well (Fig. 7). 

To generate data with a high information content in a less 
artificial way, the training set for the next network (network IV) 
was produced from six distinct examples of flow through the 
pipe (29 input-target pairs from each to give a total of 174). 
Network IV employed a linear activation function, with no 
scaling of the training set. A mean square error of 0.1 1 was 
attained after 1 000 152 iterations, when the decrease in mean 
square error had effectively stopped. Training was not as 
successful as with network 111 (Table 1). Fig. 8 shows that 
although the general characteristics of flow were successfully 
modelled the fine internal structure of the aerosol cloud and the 

rate at which the aerosol moved down the pipe were no 
predicted exactly. 

The final network to be trained with cellular automata data 
incorporated weight decay and connection pruning. The initial 
decay constant ( c )  was O.OOO1, with all weights below 0.01 
being pruned every 300 000 iterations. This network (network 
V) was also trained with high information content data, and 
performed almost as well as those with imposed local 
connectivity. A final mean square error of 0.32 was attained 
after 1 000 152 iterations, when learning had effectively 
finished. By the end of the last pruning epoch, connectivity 
had been reduced from 100% to 6%. Fig. 9 shows the pattern of 
connections from cell [6,6] on the input layer, where a local 
connection scheme has been discovered during the training 
process. The local connection weights achieved after training 
were, however, not as close to the desired values as those in 
network IV (Table 1) and the pruning process did not 
completely remove all unnecessary connections. As a result, 
the ANN simulations showed an incorrect lateral movement of 
aerosol within the pipe, and an erroneous generation of aerosol 
as flow proceeds down the pipe. This is demonstrated in Fig. 10, 
which shows the inability of the network to model the fine 
structure of the aerosol cloud, an excessive aerosol concentra- 
tion towards the end of the simulation, and the rear of the 
aerosol cloud advancing too slowly. 

Learning with CFD models 
As the flows involved in CFD simulations are more complex 
than those of the cellular automata, the desired values for con- 
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Real data 

Real data 

FIG. 7 .  A comparison of the real and (ANN) network 111-simulated aerosol flow in the 2-D pipe. Details are as described for Fig. 5 

Real data 

FIG. 8. 
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FIG. 9. An example of connectivity obtained using weight decay and 
connection pruning in the training of network V The highlighted input 
layer neuron [6,6] has connections to the 11 highlighted output layer 
neurons. 

nection weights cannot be predicted. Assessment of the quality 
of training can only be performed by examining the simulation 
performed using trained networks. The results obtained from 
training a network to predict the behaviour of flow in the first of 
the two CFD simulations were very promising. The network 
(network VI) used a linear activation function, f(x) = x, with 
unscaled training set data, obtained from all three CFD runs. 
Both weight decay and connection pruning were used, with the 
initial decay constant ( 5 )  being 0.0001 and all connection 
weights below a threshold of 0.0 being pruned every 200 050 
iterations. When learning had effectively finished, the final 

mean square error was 0.029 after 1 OOO 008 trials (taking two 
days in real time). After the final pruning epoch, the degree of 
connectivity had been reduced from 100Y0 to 58%. An example 
of the level of connectivity remaining after training is given in 
Fig. 11, which shows the connections to the output layer. 
Connectivity has been made local, but with a larger extent than 
seen in the cellular automata model. Fig. 12 shows time steps 
1-5 and 11-15 from a simulation with network VI (contours 
shown are isotherms for CFD data), and there is very little 
difference between the network prediction and the CFD data. 

The move to the second CFD system produced longer 
training times (four days in real time) and less accurate results. 
The trained networks could, nonetheless, still predict the 
patterns of aerosol flow. The network used (network VII) was 
similar to network VI, and was also trained with data from three 
CFD runs. Weight decay and pruning were used, with an initial 
decay constant of 0.0001 and pruning every 200 050 iterations. 
The final mean square error of 5.62 was obtained after 
2 000 016 trials, at which point the mean square error was 
decreasing only very slowly. After the final pruning epoch, the 
degree of connectivity had been reduced from 100% to 24%. 
Fig. 13 shows a simulation with network VII, and is presented 
in a manner slightly different from previous simulations. On the 
left of each frame is the first data plane, on the right the second 
plane. Although the general pattern of flow is predicted well, 
there is one area at the top of the jet in the fmt plane where all 

ANN prediction 

Real data 

FIG. 10. A comparison of the real and (ANN) network V-simulated aerosol flow in the 2-D pipe. Details are as described for Fig. 5. 
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DO. 11. An example of connectivity obtained using weight decay and 
mmection pruning in the training of network VII. The highlighted 
input layer neuron [8,6] has connections to the 72 highlighted output 
layer neurons. 

aerosol is missing; this probably occurred because valid 
connections were incorrectly pruned. In addition, the network 
predicts an aerosol cloud less dense than that present in the 
CFD data. 

Discussion 

The initial work presented here has demonstrated that ANNs 
can be successfully employed to model and predict aerosol flow 
in simple experimental systems. We have, moreover, developed 
techniques for successfully training our two-layer perceptrons 
and assessing their performance once trained. 

In the presentation of results, importance has been given both 
to the move to local connectivity and to the exploration of the 
effect of the information content of the training set. These 
changes were driven by the need to increase the ratio of training 
data to variables within the network. In generating the results 
presented here we have seen not only that the user's choice of 
the many network parameters affects network performance but 
also that the quality and amount of information contained 
within the training set data is very important. Whereas fine 
tuning of such parameters as the momentum factor, a, and the 
learning rate, f l ,  in most cases the speed of learning, the 
information content of the training set or the level of network 
connectivity, critically affect the success of learning. Initial 
experiments with low information content training sets did not 
produce networks that could successfully predict patterns of 
aerosol flow. Increasing the amount of information given to 
these networks enabled them not only to memorize the 
behaviour of aerosol clouds which they had encountered but 
also to generalize, predicting the behaviour of previously 
unseen clouds. This has relevance to the experimenter applying 
this approach to other experimental systems; care must be taken 
to obtain data covering as many different states of the system as 
possible. In order to obtain ANNs correctly trained to model 
aerosol flow in either generation devices or pulmonary airways, 
the experimenter must ensure that the data describing aerosol 
flow has a sufficiently high information content, a task which 
may well be difficult to achieve given current methods of 
investigating aerosol flow. 

ANN prediction 

L . 1  

FIG. 12. A comparison of the real and (ANN) network VI-simulated fluid flow in the first of the CFD models (shown in Fig. 4a). The pattern of fluid 
temperature is shown by means of a grey scale with superimposed isothermal contours. The two rows of panels presented on top are for time steps 1- 
5, and those below are for time steps 1 1-1 5. 
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ANN prediction 

Real data 

ANN Drediction 

Real data 

Frc. 13. A comparison of the real and (ANN) network V11-simulated fluid flow in the second of the CFD models (shown in Fig. 4b). Details are as 
described for Fig. 12. 

The amount of information required to train a network 
successfully will be affected by the number of variables within 
that network that are adjusted during training. If the number of 
input and output neurons is not changed, this depends solely on 
the level of connectivity. With the simplest connection 
paradigm, complete connectivity, networks are not successfully 
trained, even when provided with a high level of information in 
the training set (data not shown). The move to local 
connectivity reduced the number of connections in a 12 x 20 
network from 57 600 to 1972 (that is, almost 30-fold) and was 
made on the assumption that the behaviour at a given point in 
the modelled system is determined only by the state of the 
system around that point. This was valid for the cellular 
automata model of aerosol flow, and should remain valid to 
varying extents for other aerosol systems. In real physical 
systems, however, the extent of the region considered as “local” 
to a particular point may be larger than the eight other points in 
its immediate vicinity. In the lung, for example, features such as 
the laryngeal jet (Heyder & Rudolf 1984) mean that flow in the 
larynx can affect aerosol deposition much deeper down the 
bronchial tree. 

Such considerations prompted the adoption of weight decay 
and connection pruning, by which connectivity is dynamically 
adjusted during training. The results obtained using this method 
were acceptable, although slightly poorer than those from 
networks with imposed local connectivity. It is interesting to 
note that the change from 3% connectivity in the purely local 
scheme to 6% connectivity “discovered” by connection pruning, 
abolishes the ANNs capacity for perfect learning of the rules 
governing flow in the cellular automata. The need to start with 
full connectivity also increased the amount of computer time 
required to train a network. This dynamic connection 
modification process is, however, the only appropriate way to 

work towards local connectivity when the aerosols being 
investigated are more complex than our initial cellular automata 
model, as evinced by our later work. 

Our investigations have also enabled us to develop methods 
of assessing the quality of network training, When the system 
being investigated is not fully understood, or when more 
complicated network structures are used, examination of 
internal connection weights will not be of use. Here, however, 
we have demonstrated that the comparison of network 
simulations of flow with experimental data is an appropriate 
method of assessment. Other measures of the progress of 
training, such as the mean square error, can only indicate 
whether a network has been trained- they do not reveal 
whether it is correctly trained. A solution that works only for the 
data presented in the training set (giving a network that can 
memorize, but not generalize) can produce a misleadingly low 
mean square error. In this case, simulations over the complete 
time course of aerosol flow will only model experimental flow 
when the starting state for the stimulation is the same as that of 
the experiment that provided the data for the training set, 
something which has been observed in some of the work 
reported here. In particular, network I yields the lowest mean 
square error but is the poorest performer of all the networks 
presented. Testing with experimental data sufficiently different 
from the training set is, therefore, required to be sure that a 
network is correctly trained. 

With the usefulness of ANNs as tools for investigating 
aerosol flow established, training with data from CFD models 
tested this approach with more realistic data. In the first of the 
CFD studies, the flow phenomena studied were essentially two- 
dimensional despite the three-dimensional nature of the 
experimental system with data taken from a plane of symmetry 
running through the experimental space. The processes 
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involved in flow were more complex, involving turbulence in 
dhtion to bulk flow and diffusion. 

f ie  second CFD study moved closer toward true three- 
dimensional modelling. Predicting aerosol behaviour at every 

'd point in our experimental model would have been Pl . .  . pmhibitwe, involving as it would 4096 data points (and some 
16.8 million connections in a fully connected ANN). Instead, 

were taken from two perpendicular planes in the 
device, with the network being to able to use 

cues from the longitudinal plane to predict the arrival of the 
aem~ol cloud at the second, transverse plane. 

both CFD models, ANNs appeared to be able to model 
smsol flow successfully. The extent of this modelling ability is 
not investigated here; the only variable in all the CFD 
,xperiments was temperature. The ability of an ANN to predict 
the effect of changes in jet velocity has not been measured, and 
further work with such changes is needed. More complex 
systems would undoubtedly require an increase in the complex- 
ity of the networks used to model them, with a corresponding 
increase in the amount of information required to train such 
networks. As the aerosol flows being modelled become more 
realistic, obtaining training data with enough variability and 
information content is likely to become more difficult. 

Despite these reservations, however, the successful use of 
ANNs in modelling both simple and more stringent models of 
flow leaves us optimistic that this approach is worthy of further 
exploration and may be useful in the modelling of aerosol flow 
in generation devices and perhaps even in the human lung. 
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